Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis.

نویسندگان

  • Sang Hyun Lee
  • Thomas V Doherty
  • Robert J Linhardt
  • Jonathan S Dordick
چکیده

Lignocellulose represents a key sustainable source of biomass for transformation into biofuels and bio-based products. Unfortunately, lignocellulosic biomass is highly recalcitrant to biotransformation, both microbial and enzymatic, which limits its use and prevents economically viable conversion into value-added products. As a result, effective pretreatment strategies are necessary, which invariably involves high energy processing or results in the degradation of key components of lignocellulose. In this work, the ionic liquid, 1-ethyl-3-methylimidazolium acetate ([Emim][CH3COO]), was used as a pretreatment solvent to extract lignin from wood flour. The cellulose in the pretreated wood flour becomes far less crystalline without undergoing solubilization. When 40% of the lignin was removed, the cellulose crystallinity index dropped below 45, resulting in > 90% of the cellulose in wood flour to be hydrolyzed by Trichoderma viride cellulase. [Emim] [CH3COO] was easily reused, thereby resulting in a highly concentrated solution of chemically unmodified lignin, which may serve as a valuable source of a polyaromatic material as a value-added product.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Micromorphology and Topochemistry of Poplar Wood during Mild Ionic Liquid Pretreatment for Improving Enzymatic Saccharification.

Ionic liquids (ILs) as designer solvents have been applied in biomass pretreatment to increase cellulose accessibility and therefore improve the enzymatic hydrolysis. We investigated the characterization of the micromorphology and the topochemistry of poplar wood during 1-ethyl-3-methylimidazolium acetate pretreatment with mild conditions (90 °C for 20 and 40 min) by multiple microscopic techni...

متن کامل

Factors Affecting Wood Dissolution and Regeneration of Ionic Liquids

Three wood species, eucalyptus grandis (E. grandis), southern pine (S. pine), and Norway spruce thermomechanical pulp (N. spruce TMP) were pretreated by dissolution in the ionic liquid (IL) 1-allyl-3methylimidazolium chloride ([AMIM]Cl). The wood was regenerated from the ionic liquid in high yield and the recycling of the ionic liquid was nearly quantitative. The lignin contents and the efficie...

متن کامل

Fractionation of Processed Spruce Wood Obtained in the Production of Ethanol

Fuel ethanol can be produced from pretreated spruce wood through enzymatic hydrolysis and fermentation. Processed spruce wood samples (acid-catalyzed steam hydrolysis followed by enzymatic hydrolysis and fermentation) were fractionated into water-soluble products and residual solids. The dioxane/water soluble portions of the solids were fractionated by liquid-liquid extraction. A substantial po...

متن کامل

Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses

UNLABELLED BACKGROUND In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the im...

متن کامل

Effect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment.

The ionoSolv pretreatment is a new technique employing protic low-cost ionic liquids and has previously been applied to successfully fractionate switchgrass and the grass Miscanthus giganteus. This study investigates the effect of using the protic ionic liquid solution [N2220][HSO4]80% with two different acid/base ratios (1.02 and 0.98) at 120, 150 and 170 °C on the pretreatment outcome of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 102 5  شماره 

صفحات  -

تاریخ انتشار 2009